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Abstract

Dustiness quantifies the propensity of a finely divided solid to be aerosolized by a prescribed 

mechanical stimulus. Dustiness is relevant wherever powders are mixed, transferred or handled, 

and is important in the control of hazardous exposures and the prevention of dust explosions and 

product loss. Limited quantities of active pharmaceutical powders available for testing led to the 

development (at University of North Carolina) of a Venturi-driven dustiness tester. The powder is 

turbulently injected at high speed (Re ~ 2 × 104) into a glass chamber; the aerosol is then gently 

sampled (Re ~ 2 × 103) through two filters located at the top of the chamber; the dustiness index is 

the ratio of sampled to injected mass of powder. Injection is activated by suction at an Extraction 

Port at the top of the chamber; loss of powder during injection compromises the sampled 

dustiness. The present work analyzes the flow inside the Venturi Dustiness Tester, using an 

Unsteady Reynolds-Averaged Navier-Stokes formulation with the k-ω Shear Stress Transport 

turbulence model. The simulation considers single-phase flow, valid for small particles (Stokes 

number Stk <1). Results show that ~ 24% of fluid-tracers escape the tester before the Sampling 

Phase begins. Dispersion of the powder during the Injection Phase results in a uniform aerosol 

inside the tester, even for inhomogeneous injections, satisfying a necessary condition for the 

accurate evaluation of dustiness. Simulations are also performed under the conditions of reduced 

Extraction-Port flow; results confirm the importance of high Extraction-Port flow rate (standard 

operation) for uniform distribution of fluid tracers. Simulations are also performed under the 
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conditions of delayed powder injection; results show that a uniform aerosol is still achieved 

provided 0.5 s elapses between powder injection and sampling.
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1. INTRODUCTION

1.1. Dustiness

The measurement of dustiness has received renewed interest in the powder and occupational 

health communities as a test relevant for the assessment of exposure to particulates. 

Historically, dustiness tests were intended to simulate typical environmental and 

occupational settings so that an assessment could be made of exposure and a 

recommendation could be made as to a level of control [1–5]. Unfortunately, no clear 

relationship has yet been established linking inhalation exposure to dustiness as determined 

by any of these historical methods [1–2, 4, 6–11]. This may be due to the gentle nature of 

the tests employed, as well as to the variability of the external parameters, which influence 

the test.

Dustiness is relevant wherever powders are mixed, poured [12–13], transferred [14], 

handled, or conveyed [15] and is important in the control of hazardous exposures. Aerosol 

resuspension from dusty surfaces [16] is relevant for the prevention of dust explosions [17–

19]. Sanding [20], grinding or milling of bulk materials generates and suspends small 

particles as airborne dusts [5]. Dust is also ubiquitous in mining and agricultural settings 

[21].

1.1.1. Dustiness Testing—Dustiness quantifies the propensity of a finely divided solid to 

be aerosolized by a prescribed mechanical stimulus. The aerosolization process overcomes 

the adhesive binding forces within the powder and thus disperses pre-existing particles from 

the powder into the air [22–23]. A dustiness test is not intended to comminute the powder 

and generate new particles. This precludes the use of high shear critical orifices [24] and 

high impact processes [25] for dustiness determination.

Several attempts have been made at standardization [26–28], but these have not been widely 

accepted.

1.1.2. Historical dustiness test methods: falling powder and rotating drum—
Historically [29–32], dustiness testing has utilized configurations (falling powder, rotating 

drum) that have imparted fairly gentle mechanical agitation to the powder. While these tests 
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were devised to simulate various industrial procedures, their gentle agitation may be 

responsible for difficulties in reproducibility, as external factors must then be stringently 

controlled. The maximum velocities of the particles achieved are v ~ 1 m/s, and the 

aerodynamics tend to involve large-scale eddies. These techniques typically require the use 

of relatively large quantities of powder, e.g., 102 – 103 grams per test [28].

In the falling powder method, a bolus of particles is released from a height [27]. The 

particles are aerosolized either by the countercurrents generated during the fall, or by the 

countercurrents generated by the impact of the bolus at the bottom of the fall [6, 14, 33–41].

In the rotating drum (Heubach) method, a powder is rotated within a drum with internal 

baffles; again, the particles are aerosolized by the countercurrents generated during the 

periodic avalanches [42–48].

These methods have been compared using a variety of powders [22, 49–53]. Modeling of the 

aerosolization and dust generation under these test conditions has also been attempted [54–

56]. Dustiness measurement using a gas fluidization technique has also been proposed [57–

58].

1.1.3. Venturi Dustiness Tester (VDT)—A qualitatively different method was 

introduced [59] in order to test pharmaceutical powders. Evans et al. [60] used this method 

to study a wide variety of nanoscale powders. The aim was to utilize small quantities (~ 5 

mg) of powder under confined conditions (both for reproducibility and so as to limit 

exposure of the test operator to potentially toxic material) [61]. Similar measurements have 

recently been made on pollens and molds [62].

A powder is introduced into a dispersion chamber under energetic turbulent airflow 

conditions; typical nozzle airflow v ~ 70 m/s. Aerosolization presumably occurs via 

aerodynamic lift and pneumatic drag mechanisms acting on the powder; particulate 

velocities are one to two orders of magnitude larger than in the gentler falling powder and 

rotating drum methods. Aerosolization proceeds under turbulent conditions, whereas in the 

gentle tests, the airflows are larger scale and laminar. The reproducibility [59] of the method 

has been criticized [63] but has been defended [64]. The method involves more aggressive 

air flows than those typically encountered in large-scale workplace activities (however, the 

use of compressed air to clean contaminated worker clothing or work surfaces approximates 

the aerodynamic conditions of the VDT).

Each of these methods is under consideration [65] as a potential ISO standard test method of 

dustiness (falling powder and rotating drum [Annex C], and the Venturi method [Annex E]).

1.2. Geometry of the Venturi Dustiness Tester (VDT)

Figure 1 is a schematic of the VDT. It consists of a 5.7 L glass dispersion chamber with a 

square base and a tapered top. The horizontal end of an inverted tee-shaped injection tube (d 
= 0.44 cm) pierces the midsection of the front wall (Nozzle Inlet); powder is aerosolized 

within this tee-shaped tube and enters the VDT as an aerosolized jet. The VDT has three 

outflow ports: an Extraction Port, a Sampler Port (Dust Sampler), and a Cyclone Port 
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(Respirable Mass Cyclone). During the Injection Phase, air is drawn out of the VDT through 

the Extraction Port; this is closed during the Sampling Phase. In both the Injection and 

Sampling Phases, the Dust Sampler collects powder particles of all sizes on its filter cassette, 

and the Cyclone collects respirable dust (particles less than 4.25 μm in diameter) on its filter.

1.3. Experimental Operation of the VDT

Prior to the start of the experiment, the powder, mass Mt, is loaded in the Inlet Nozzle. 

Operation of the VDT consists of two phases, Injection and Sampling. During the Injection 

Phase, at t = 0, flow is set up in the Extraction Port, Cyclone, and Sampler, at the rates of 

Qep = 53.8 L/min, Qcp = 4.2 L/min, Qsp = 2.0 L/min, respectively. These flow rates are 

continued until t = 1.50 s. The balanced replacement flow enters through the Nozzle at Qin = 

60.0 L/min, giving rise to an inlet velocity v = 65.80 m/s, corresponding to a Reynolds 

number Red = 19,900 (based on the hydraulic diameter of the nozzle). During the Sampling 

Phase (t > 1.50 s), the Extraction Port is closed (while the inlet and the Cyclone and Sampler 

ports remain open), reducing the total replacement flow to Qin = 6.2 L/min. This is 

continued for 240 s, during which the inlet flow rate corresponds to an inlet velocity v = 

6.79 m/s and Red = 2,050.

At the end of the experiment, each filter is removed and weighed. The masses of the powder 

collected on the cyclone filter, Mdc, and on the dust sampler, Mds,, are used to calculate [59–

60] the respirable and total dustiness, respectively, as

(1)

(2)

1.4. Need for Computational Fluid Dynamics (CFD) Analysis of the VDT

Absent a modeling analysis, the VDT remains somewhat of a ‘black box’. A CFD analysis 

will elucidate the aerodynamics of the VDT so as to better understand the robustness of the 

instrument and its operating protocol. We are particularly interested in understanding 

whether the instrument is effective in uniformly dispersing powders (Injection Phase), 

whether the sampling is statistically sound or subject to biases, and whether the dustiness 

estimates (1) and (2) are accurate.

We first study the aerodynamics of the standard operation of the instrument (Injection and 

Sampling Phases). We next examine the effects of reduced injection flows, and of 

inhomogeneous and delayed powder injections. In these studies, we assume that the Venturi 

and aerodynamic drag mechanisms are effective in aerosolizing the powder (which occurs in 

the Nozzle prior to entering the VDT); we confine ourselves to the fate of that aerosol once 

it has entered the VDT.
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2. CFD ANALYSIS OF THE VENTURI DUSTINESS TESTER

2.1. Mathematical Formulation

For the flow entering the VDT, Red ≈ 19,900, during the Injection Phase, and Red ≈ 2050, 

during the Sampling Phase, both in the turbulent regime [66]. Therefore, the CFD 

simulations have been conducted as Unsteady-Reynolds-Averaged Navier-Stokes (URANS), 

using a Shear-Stress k-ω turbulence model [67–69]. The equations were solved numerically 

using a finite-volume pressure-based solver (Fluent 14.5), using SIMPLE (semi-implicit 

method for pressure-linked equations) [70] as the pressure–velocity coupling method, with 

the default values for the relaxation parameters (0.3 for continuity and 0.7 for momentum). 

Convective and diffusion terms are integrated in space using a second-order upwinding 

scheme, and a second-order accurate central-differenced scheme, respectively. Temporal 

discretization was performed using a second-order accurate implicit scheme. Trapezoidal 

numerical integration is employed to calculate the fluid-tracer trajectories.

The continuity and momentum (Reynolds-averaged Navier-Stokes) equations are given by:

(3)

(4)

where  represent Reynolds stresses, and unprimed, ui, and primed, ui′, denote, 

respectively, averaged and fluctuating velocities (summation convention over repeated 

indices).

Within the Boussinesq approximation, the Reynolds stresses are given by the mean velocity 

gradients:

(5)

Here k and μt are, respectively, the turbulent kinetic energy and turbulent viscosity, with 

appropriate transport equations [67–69]; ρ is the fluid density, and δij is the Kronecker delta.

2.1.1. Convergence criteria—The solution of the equations was considered to be 

converged when the scaled residuals for the continuity, momentum, turbulent kinetic energy, 

and specific dissipation-rate equations decreased to 10−5 for each time step (Δtinjection = 10−4 

s, Δtsampling = 10−3 s) during the simulation.

2.1.2. Fluid-tracer Tracking—The aerosol is modeled by massless fluid-tracers, which 

follow the local fluid flow (Lagrangian framework); the tracer velocity, vt, is same as the 

velocity of the fluid, vf. Fluid-tracer trajectories are calculated by integrating
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(6)

Fluid streamlines never intersect the walls, so additional wall boundary conditions are not 

needed for the particles (fluid-tracers); thus, there are no wall losses.

2.1.3. Statistics of Fluid-tracer Concentration—To assess the homogeneity of the 

aerosol, the VDT chamber volume is divided into 90 regions (‘boxes’) of roughly equal 

volume (the box map is detailed in Supplemental Material Fig. S2), and the fluid-tracer 

population in each box is monitored; from this population map, a concentration histogram is 

constructed. A spatially uniform concentration corresponds to a narrow concentration 

distribution, with a sharply transitioning cumulant; a broad distribution, with a gently 

transitioning cumulant, indicates concentration inhomogeneities.

2.2. Mesh Generation

Mesh generation plays a significant role in numerical convergence and solution accuracy. 

For the VDT, a sufficiently dense mesh is required to resolve the shear layer region of the 

inlet nozzle jet. In addition, there should be enough cells in the jet impingement region. 

Sufficient mesh resolution of the boundary layers on the walls and high gradient regions 

near the outlet ports is also necessary.

2.2.1. Refinement near walls—In order to resolve the turbulent boundary layer, and 

successfully implement near-wall turbulence modeling, the mesh must be refined [71] near 

the walls (Enhanced Wall Treatment). Near the walls, the mesh cell size is determined [72] 

using y+ ~ 1, where

(7)

Structured prism-cell layers are used on the walls. For y+ = 1, the cell size is 0.1 mm. This 

transitions to the bulk domain (filled with tetrahedral elements) over eight structured prism 

layers, with a geometric progression of 1.1.

2.2.2. Refinement around aerosol jet—A coarse mesh cannot resolve the gradient of 

the velocity (and other turbulent flow properties) around the jet. An iso-geometric mesh is 

used inside and around the jet shear layer (Fig. 2). The jet width, b, is expected [66, 73–74] 

to increase linearly with axial distance, x, as b = 0.11 * x. Inside this conical refinement 

region, tetrahedral elements of size 0.4 mm (front half of the jet) and 0.8 mm (back half of 

the jet), connected linearly over 4 layers, are used. The conical refinement region again 

transitions to the bulk domain with tetrahedral elements increasing in size with a geometric 

progression 1.05. The enhanced flow near the Extraction Port is treated with a similar mesh 

refinement.
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The total number of mesh points is ~ 3 × 106.

Grid independence of the simulation results is addressed in the Supplemental Material.

2.3. Conditions for Applicability of Simulations

2.3.1. Condition for particles to follow streamlines—A particle (massless fluid 

tracer in these simulations) will follow the local streamline if [75] the corresponding Stokes 

number, Stk < 1. For a particle of diameter, dp, and density, ρp, moving in a fluid of 

viscosity, μf, the Stokes number, Stk ~ ρp dp
2 v/18 μf D, where D is a characteristic length 

[75–76]. Near the nozzle, v ~ 65.76 m/s, D ~ 2 mm; for dp ~ 1 μm, with ρp ~ 2.5 g/cm3 

(typical of inorganic solids), Stk ~ 0.3. The Stokes number needs to be modified in turbulent 

flow [75, 77–78].

2.3.2. Condition for Incompressibility—The maximum velocity v = 65.76 m/s occurs 

at the Nozzle during injection. This corresponds to a Mach number Ma = v/csound ~ 0.19 

(where csound = 340 m/s is the speed of sound in air). It is thus appropriate to treat the flow 

in the VDT as incompressible [76].

2.3.3. Condition for Dilute Aerosol—For a powder (density ρp ~ 2.5 g/cm3) with 

spherical particles of diameter dp ~ 1 μm, if all 5 mg is aerosolized in the tube (D = 2 mm, L 
= 2 cm), the volume fraction occupied by the powder is ϕtube ~ 10−1, so the average distance 

between particles is n−1/3 ~ 2 μm, which is comparable to the particle size. Thus, within the 

Nozzle, the aerosol is definitely not dilute. Within the cone of the jet, ϕcone ~ 1.5 × 10−3, so 

the distance between particles is n−1/3 ~ 10 μm. Once the aerosol is homogeneously 

dispersed within the VDT, the volume fraction occupied is ϕbox ~ 3 × 10−7, so the distance 

between particles is n−1/3 ~ 120 μm, which is quite dilute. Thus, aside from inside the 

Nozzle, the aerosol is dilute throughout the Injection Phase.

2.3.4. Condition for Neglecting Gravitational Settling—Comparing the gravitational 

settling velocity, vgrav, to a typical velocity, v, in the flow, vgrav/v ~ Stk L/v2. Within the 

Sampling Phase, vinlet ~ 7 m/s, Stk ~ 0.03, L ~ 17 cm, whence vgrav/v ~ 10−3, and 

gravitational settling may be neglected. During the Injection Phase, typical velocities are 

higher, so, again, gravitational settling may be neglected.

3. RESULTS AND DISCUSSION

This section presents the results of the numerical simulations. Flow visualization, using 

fluid-tracers, enables an understanding of the aerosol dynamics during the Injection Phase, 

and evaluation of the spatial distribution of the aerosol at end of Injection Phase, the 

depletion of the aerosol during the Sampling Phase, and the spatial distribution of the 

aerosol at the end of the Sampling Phase. To quantify the fluid-tracer distribution, the VDT 

is divided into 90 small volume boxes (Fig. S2), and fluid-tracer number concentration is 

determined as a function of time in each of these boxes; aerosol inhomogeneity is quantified 

by the spatial statistics of the concentration. Fluid-tracers are followed from the Injection 

Nozzle to either collection (on the Sampler or the Cyclone) or exit (through the Extraction 

Port); this permits an estimate of fluid-tracer loss during the Injection Phase.
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3.1. Flow Analysis of Standard VDT Operation

3.1.1. Injection Phase—The flow rates used in this simulation correspond to the standard 

operation of the VDT. Motivated by the experimental visualization [60] of powder injection 

into the VDT, fluid-tracers are continuously released during the first sixth of the Injection 

Phase (0 < t < 0.24 s). Throughout the Injection Phase (1.50 s), all three exit ports 

(Extraction, Cyclone, Sampler) remain open; the flow is balanced by the total inlet flow 

through the Injection Nozzle, Qin = 60 L/min (Red = 19,900).

Figures 3a, b show the flow evolution inside the VDT during the Injection Phase, which is 

remarkably similar to the experimental visualization of aerosol injection (Figure 2 of [60]).

Figure 3a details the aerosol flow during the first quarter of the Injection Phase; the aerosol 

jet is directed towards the back wall of the VDT; the edges of the jet roll back due to 

opposing viscous forces [79]. The jet impinges on the back wall at t ~ 0.01 s, and starts to 

spread radially on the wall; this is recognized as normal impingement of a circular jet on a 

plane surface [74, 80–81]. The interaction of the jet with the wall results in the formation of 

ring-shaped wall eddies (t = 0.03 s), which are associated [79] with enhancement of local 

momentum transfer. These eddies roll up and progress radially (t = 0.06 s) until they reach 

the bottom and top edges of the VDT. Experimentally, powder from the nozzle only impacts 

the back wall at t ~ 0.20 s (Fig. 2f of [60]); the ring-shaped eddy is evident at t ~ 0.33 s (Fig. 

2i of [60]).

Asymmetry between top and bottom (due to the protruding Samplers) results in the 

formation of two slightly different flow patterns in the VDT. Near the bottom edge of the 

VDT, the interaction of the ring-shaped wall eddies with the bottom wall results in the 

formation of larger vortices. Flow around the left and right edges starts to move backwards, 

resulting in aerosol circulation from the back half to the front half of the VDT (t = 0.12 s. 

0.18 s. 0.24 s). At t = 0.30 s, aerosol at the bottom half of the VDT is entrained by the jet, 

thus completing one circulation. This circulation is primarily responsible for mixing and the 

eventual uniform aerosol distribution within the VDT.

A slightly different flow pattern develops in the top half of the VDT due to the presence of 

the Cyclone, Sampler, and Extraction Ports. Aerosol first reaches the Extraction Port at t = 

0.12 s. Remaining aerosol starts to move backwards along the top and sidewalls. The two 

sampling devices (Cyclone and Dust Sampler) obstruct this backward motion, thus forcing 

the aerosol to move through the region between the Cyclone and the Sampler, and close to 

the sidewalls. In particular, the obstruction posed by the Cyclone results in a higher 

concentration of aerosol in the region behind the Cyclone. At t = 0.36 s, flow in the top half 

of the VDT is entrained by the incoming jet, thus completing one circulation.

Experimentally, the ring-shaped wall-eddies do not seem to persist for as long as the 

simulation indicates; e.g. there is no evidence of any remnant large-scale recirculation at t ~ 

0.77 s (Fig. 2j of [60]).

Figure 3b shows the flow evolution in the VDT during the final three quarters of the 

Injection Phase. At t = 0.42 s, a higher concentration of aerosol is still observed in the 
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regions around the Cyclone and the Sampler. At subsequent times (t = 0.48 s, 0.54 s, 0.60 s, 

0.75 s), incoming fluid from the nozzle continues to stir the aerosol through large-scale 

structures, thus enhancing aerosol mixing. In the final third of the Injection Phase (t > 1.05 

s), the aerosol is uniformly distributed throughout the VDT. Experimentally, the aerosol 

appears uniform by t ~ 1.50 s (Fig. 2k of [60]).

That the CFD simulation captures the essential features of the experimental VDT powder 

dispersion is evident if the two processes are compared cinematographically. This may be 

achieved by viewing the videos in the Appendix.

This uniform aerosol distribution (constant box population—Fig. S3) is confirmed by the 

sharpness of the cumulant in the fluid-tracer concentration distribution (Fig. 4). The 

distribution has been normalized to the global density; the distribution at the end of Injection 

is strongly peaked at the global uniform density; the coefficient of variation σ/μ = 0.12 

(where μ and σ are, respectively, the mean and the standard deviation of the fluid-tracer 

distribution).

At the end of the Injection Phase, 23.80% of the injected aerosol has escaped through the 

Extraction Port (similarly, 0.97% and 0.50% of the aerosol particles have been collected on 

the Cyclone and Sampler, respectively). Thus, equations (1) and (2) underestimate the true 

dustiness, as they normalize to the total loaded mass, instead of to the mass available for 

sampling; thus, the normalizing mass should be replaced by 0.762 Mtd (the mass which has 

not escaped through the Extraction Port). Both Respirable and Total Dustiness expressions 

(1) and (2) should be augmented by the same multiplicative factor 1.312. As this correction 

factor will undoubtedly engender confusion, it is recommended that experimental work 

continue to report ‘raw’ dustiness values, given by equations (1) and (2), but then 

acknowledge that these must be corrected with the multiplicative factor 1.312 to yield 

‘injection loss corrected’ dustiness values.

Only 2% of the mass collected on each of the Cyclone (0.97/49.10 = 0.02) and the Sampler 

(0.50/23.49 = 0.02) is deposited during the Injection Phase. Thus, the sampled mass is 

dominated by the collection during the Sampling Phase and is not biased by any anomalous 

collection during the Injection Phase.

3.1.2. Sampling Phase—During the Sampling Phase, the Extraction Port is closed while 

the air is removed through the Cyclone and Sampler Ports. This reduces the total inlet flow 

rate of air to QT = 6.2 L/min (vinlet = 6.79 m/s, Red = 2,050). During the Sampling Phase 

(240 s), material is collected on the Sampler and the Cyclone. For this simulation, the initial 

condition is the final flow condition and fluid-tracer distribution obtained at the end of the 

Injection Phase. Figures 5a and 5b show the decay of aerosol concentration in the VDT and 

the accumulation of aerosol passing through Sampler and Cyclone, respectively. Initially (t < 

80 s), the aerosol concentration decays exponentially

(8)
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consistent with replacement of uniform aerosol by clean air under well-mixed conditions, 

where τ = V/QT = 55.16 s (V is the chamber volume). This compares favorably with the 

experimental time constant of τ = 55.6 s [60]; in particular, compare the CFD time 

dependence (Figure 5a) with the experimental time dependence (Figure 3 of [60]). For t > 80 

s, the spatial distribution of the aerosol inside the VDT is no longer uniform (appearance of 

dead zones); this leads to a slight retention of aerosol within the VDT above what would be 

expected from simple dilution: at t = 240 s, 3.66% of the aerosol remains in the VDT, 

compared with 0.96% expected from well-mixed dilution.

At the end of the Sampling Phase, the CFD simulation predicts that 49.10% of the aerosol 

particles are collected on the Cyclone and 23.49% on the Sampler; 3.66% of the aerosol 

particles thus remain un-sampled in the VDT. The cumulant of the distribution of fluid-

tracer concentration at the end of the Sampling Phase is also shown in Fig. 4. At the end of 

the Sampling Phase, only a few fluid tracers remain in the VDT. However, the aerosol 

concentration is not uniform; most regions are devoid of aerosol (low concentration), with a 

few dead zones (high concentration); the cumulant is thus centered below the global density 

and exhibits a long tailing at the higher concentrations, reflecting these dead zones. 

Inspection of the box populations (Supplemental Material Fig. S4) identifies the dead zones 

as the regions close to the corners or edges.

3.2. Reduction of Extraction-Port Flow Rate

During the standard operation, the Extraction Port draws fluid out at 53.8 L/min, which 

corresponds to an Extraction-Port Reynolds number Reep = 12,200. As discussed above, 

23.8% of the fluid-tracers leave the VDT prior to Sampling. A reduced Extraction-Port flow 

would reduce this premature loss. However, a reduced Extraction-Port flow might 

compromise the efficient mixing that results in the uniform distribution of fluid-tracers at the 

end of Injection. In order to investigate these effects, additional simulations were performed 

with reduced Extraction-Port flow rates (0.5 Qep, 0.2 Qep, 0.1 Qep).

Operating at reduced Extraction-Port flow rate, Qep/2 (vep ~ 33.10 m/s, Reep ~ 6,110, vinlet ~ 

36.28 m/s, and Red ~ 10,900) results in less aerosol ( ~14.76% ) leaving the VDT prior to 

Sampling. However, the spatial distribution of the aerosol at the end of Injection evinces 

(Figs. 6 and S5) inhomogeneity (coefficient of variation, σ/μ = 0.19).

A further reduction in the Extraction-Port flow rate, Qep/10 (vep ~ 2.79 m/s, Reep ~ 1,220, 

vinlet ~ 12.7 m/s, and Red ~ 3820), results in still less aerosol ( ~ 1.20% ) escaping the VDT 

prior to Sampling. However, the spatial distribution of the aerosol at the end of Injection 

(Figs. 6 and S6) is markedly non-uniform (coefficient of variation, σ/μ = 0.6).

Thus, a smaller Extraction-Port flow, Qep, reduces the loss of aerosol through the Extraction 

Port during the Injection Phase, but the gentler injection fails to distribute the aerosol 

uniformly throughout the VDT. A non-uniform distribution of powder will compromise the 

collection of powders by the Sampler and the Cyclone. Dustiness, as measured in the VDT, 

presupposes a uniform, well-mixed aerosol during the Sampling Phase. This result cautions 

against reduction in Qep below the standard operating conditions.
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3.3. Effect of Inhomogeneous Injection

The above study of reduced injection identifies the importance of a uniform aerosol for 

sampling. In addition to limits on the extraction flow, Qep, it is also useful to examine how 

robust the VDT design is to inhomogeneous introduction of powder into the chamber.

In order to understand the effectiveness of this device in producing a spatially uniform 

aerosol at the end of the Injection Phase, additional cases were run with different fluid-tracer 

release patterns, but still under the usual injection flow rates As in the standard operation, 

fluid-tracers are released in the first sixth of Injection (0 < t < 0.24 s). Fluid-tracers are 

released from the left half of the injection nozzle, from the right half of the injection nozzle, 

from the top half of the injection nozzle, from the bottom half of the injection nozzle, and 

from a ring bordering the nozzle tube wall. Figure 7 shows the cumulant of the tracer density 

distribution at the end of the Injection Phase for these various injection scenarios. The 

detailed flow evolution for these inhomogeneous injections is available in the Supplementary 

Material.

Again, under the standard operating conditions, at the end of the Injection Phase, aerosol is 

uniformly distributed throughout the VDT. Thus, inhomogeneous powder injection does not 

adversely compromise the subsequent sampling; hence, the dustiness measurement is robust 

against inhomogeneous injection.

3.4. Effect of Delayed Injection

A somewhat different result is obtained if the powder is injected into the VDT after a delay. 

Additional simulations were performed injecting powder in the intervals 0.6 – 0.9 s, 0.9 – 

1.2 s, and 1.2 – 1.5 s. Figure 8 shows the cumulant of the tracer density distribution at the 

end of the Injection Phase for these various delayed injection scenarios. So long as powder 

injection occurs in the first two-thirds of the Injection Phase (t < 1.0 s), sufficient time 

elapses before the end of the Injection Phase so that mixing yields a homogeneous tracer 

distribution prior to the start of Sampling. This lead-time (0.5 s) is comparable to the 

recirculation time (0.36 s) seen in the flow visualization (Fig. 3a).

3.5. Transition from Injection to Sampling Phases

In order to ascertain how quickly the VDT transitions from the turbulent flow pattern, 

characteristic of the Injection Phase, to the gentler recirculating flow pattern, characteristic 

of the Sampling Phase, the mid-plane vorticity (vertical and horizontal), ω, was monitored. 

This is described in the Supplemental Material (Section S6). Rigorous left-right symmetry 

and approximate top-bottom symmetry in the circulation (integrated vorticity) is observed. 

The reduction in total flow, Qsampl = Qinj/9.68, is reflected in a corresponding reduction in 

mid-plane vorticity, ω (240 s) ~ ω (1.5 s)/9.5. In the simulation, the Extraction-Port flow is 

turned off abruptly; the vorticity decreases instantaneously, but overshoots and then relaxes 

to the asymptotic value, with a time constant τ = 0.22 s (bottom and top) and τ = 0.26 s 

(right and left). This relaxation time is comparable to the circulation time, 0.36 s, observed 

in the flow visualization of the Injection Phase.
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4. CONCLUSIONS

Computational fluid dynamics (CFD) is used to model the aerodynamics of the Venturi 

Dustiness Tester (VDT). Under the standard operating conditions, 24% of the aerosol is lost 

during the Injection Phase, which warrants an overall normalization correction to the 

determination of Respirable and Total Dustiness. The flow visualization confirms the 

homogenization of the dust in the VDT prior to sampling. During sampling, the dust 

concentration remains well mixed for most of the dilution, although CFD identified dead 

zones, where dust accumulates at the end of the Sampling Phase. 98% of the material 

collected on the Total and Respirable Dust Samplers derives from the Sampling Phase (i.e., 

only 2% of the material is collected on these filters during the Injection Phase).

CFD was also used to test the robustness of the design and operation with inhomogeneous 

and delayed injections. Turbulent aerosol injection is shown to be an efficient mechanism for 

producing a uniform aerosol within the VDT at the end of the Injection Phase. Under the 

standard operating conditions, the VDT adequately mixes the dust of an inhomogeneous 

injection. Similarly, delayed injection (up to 0.5 s prior to sampling) of the powder is 

accommodated by the aggressive mixing in the VDT. However, the instrument is sensitive to 

reduction in the Extraction-Port flow rate (and, hence, the dispersion flow), as this leads to 

inadequate homogenization of the aerosol prior to sampling.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX—POWDER DISPERSION VIDEOS

Courtesy of D.E.Evans, G.J. Deye, P.A. Baron (deceased)
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This appendix contains two videos, which amplify the discussion of Section 3.1.1. The first 

video illustrates the experimental dispersal of TiO2 powder in the Venturi Dustiness Tester.

Still images from this video were reported in [60]. The second video ‘animates’ the CFD 

simulation of powder dispersion in the injection phase, under standard operating conditions 

of the instrument (Figure 3).
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FIGURE 1. 
Schematic of the Venturi Dustiness Tester
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FIGURE 2. 
Generated mesh at axial plane, showing refinement around aerosol jet and Extraction Port
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FIGURE 3. 
FIGURE 3a. Time Evolution of Fluid-Tracers during Injection Phase (t = 0.01s, 0.02s, 0.03s, 

0.06s, 0.12s, 0.18s, 0.24s, 0.30s, 0.36s)

FIGURE 3b. Time Evolution of Fluid-Tracers during Injection Phase (t = 0.42s, 0.48s, 0.54s, 

0.60s, 0.75s, 0.90s, 1.05s, 1.20s, 1.50s)
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FIGURE 4. 
Cumulant of tracer concentration distribution at the end of Injection (black) and Sampling 

(red) Phases. The particle density has been normalized to the global mean density.
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FIGURE 5. 
a) Decay of Fluid-Tracer Number in VDT during Sampling Phase;

b) Cumulative Number of Fluid-Tracers passing through Cyclone and Sampler during 

Sampling Phase
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FIGURE 6. 
Cumulant of tracer density distribution at the end of Injection (1.5 s) for different injection 

rates
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FIGURE 7. 
Cumulant of tracer density distribution at the end of Injection (1.5 s) for various injection 

scenarios
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FIGURE 8. 
Cumulant of tracer density distribution at the end of Injection (1.5 s) for various delayed 

injection scenarios
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